SYLLABUS
(AS PER FIFTH DEANS COMMITTEE RECOMMENDATION):

I-SEMESTER

<table>
<thead>
<tr>
<th>SN</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AQC-111</td>
<td>Principles of Aquaculture</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td>2.</td>
<td>FRM-111</td>
<td>Taxonomy of Finfish</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>3.</td>
<td>FRM-112</td>
<td>Taxonomy of Shellfish</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>4.</td>
<td>AEM-111</td>
<td>Meteorology, Climatology and Geography</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>5.</td>
<td>FEES-111</td>
<td>Statistical Methods</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>6.</td>
<td>AQC-112</td>
<td>Fundamentals of Biochemistry</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>7.</td>
<td>AAHM-111</td>
<td>Fundamentals of Microbiology</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>8.</td>
<td>AME-112</td>
<td>Soil and Water Chemistry</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>9.</td>
<td>FPT-111</td>
<td>Fish in Nutrition</td>
<td>1(1+0)</td>
</tr>
<tr>
<td>10.</td>
<td>CNC-111</td>
<td>Swimming</td>
<td>1(0+1)CNC*</td>
</tr>
</tbody>
</table>

Total Course Credit Hour | **22(13+9)**

CNC= Compulsory non-credit course.
1. **Principles of Aquaculture 2(1+1)**

2. **Taxonomy of Finfish 3(1+2)**

Practicals: Collection and identification of commercially important inland and marine fishes. Study of their external morphology and diagnostic features. Modern taxonomic tools - Protein analysis and electro phoretic studies; Karyotaxonomy - chromosome preparation and identification. DNA barcoding, DNA polymorphism; Visit to fish landing centres to study commercially important fishes and catch composition.

3. **Taxonomy of Shellfish 2(1+1)**

Theory: Study of external morphology and meristic characteristics of crustacea and mollusca. Classification of crustacea and mollusca up to the level of species with examples of commercially important species.

Practicals: Study of external morphology. Collection, preservation and identification of commercially important prawns, shrimps, crabs, lobsters, bivalves, gastropods, cephalopods from natural habitats. Field visits for collection and study of commercially important shellfishes.
4. **Meteorology, Climatology and Geography 2(1+1)**

Theory: Nature of Atmosphere: weather and climate; composition of atmosphere; structure of atmosphere. Heat energy of atmosphere: process of heat transmission; heating of atmosphere; disposal of insulation; irregular heating of atmosphere. Temperature: Temperature instruments; periodic, horizontal and vertical temperature variations; effects of vertical air motion on temperature. Humidity and water vapour: relationship between temperature and humidity; distribution of water vapour in atmosphere; evaporation, humidity instruments and measurements. Condensation and precipitation: process of conditions of condensation, forms of condensation; precipitation; forms of precipitation, measurement of precipitation; rainfall in India. Clouds and thunderstorms: amount of cloudiness; ceiling; classification of clouds; conditions of cloud formation; reporting and identification of clouds; thunderstorms. Atmospheric pressure: meaning of atmospheric pressure; the laws of Gases; pressure units; pressure instruments; vertical, horizontal and periodic variations; isobars and pressure gradients. Wind: characteristics of wind motion; wind observation and measurement; wind representation; factors affecting wind motion. Terrestrial or planetary winds: ideal planetary wind system; planetary pressure belts. Planetary wind system; secondary winds; monsoon winds; land and sea breeze. Tropical cyclones: storm divisions; pressure and winds; vertical structure of storm centre; hurricane, sea, swell and surge; hurricane warning. Weather forecasting: forecasting process; forecasting from local indications; role of satellite in weather forecasting; synoptic weather charts. Effects of climate change on fisheries sector. Introduction to Geography: shape, size and structure of the earth; concepts of latitude, longitude and great circles; model globe, maps and different types of projections; cartography; landscape.

5. **Statistical Methods 3(2+1)**

Theory: Definition of statistics, Concepts of population, sample, Census and sample surveys, Classification of data, frequency and cumulative frequency table. Diagrammatic and graphical representation of data - bar diagrams, pie-diagram, histogram, frequency polygon, frequency curve and Ogives. Important measures of central tendency - arithmetic mean, median and mode. Relative merits and demerits of these measures. Important measures of dispersion, Range, Mean Deviation, Variance and Standard Deviation. Relative merits and demerits of these measures. Coefficient of variation; Normal Curve, Concepts of Skewness and kurtosis. Definitions of probability, mutually exclusive and independent events, conditional probability, addition and multiplication theorems. Random variable, concepts of theoretical distribution; Binomial, Poisson and Normal distributions and their use in fisheries. Basic concept of sampling distribution; standard error and central limit theorem. Introduction to statistical inference, general principles of testing of hypothesis, types of errors. Tests of significance based on Normal, t, and Chi-square distributions. Bivariate data, scatter diagram, simple linear correlation, measure and properties, linear regression, equation and fitting; relation between correlation and regression, Length weight relationship in fishes; applications of linear regression in fisheries. Methodology for estimation of marine fish landings in India, Estimation of inland fish production in India and problems encountered.

Practicals: Construction of questionnaires and schedules. Diagrams and frequency graphs. Calculation of arithmetic mean, median, mode, range, mean deviation, variance, standard deviation. Exercises on probability, Binomial and Poisson distributions, Area of normal curve, confidence interval for population mean, Test of hypothesis based on normal, t, and chi-square. Computation of Simple correlation and regression. Fitting of length - weight relationship in fishes.

6. **Fundamentals of Biochemistry 3(2+1)**

Practicals: Preparation of normal solution of acid and base, buffers and reagents. Qualitative determination of carbohydrates, proteins and lipids. Estimation of total nitrogen and crude protein of fish tissue. Estimation of carbohydrates in foods. Determination of specific gravity of oil. Extraction and estimation of total lipids in fish tissue. Determination of saponification value, iodine value and free fatty acid value.

8. Soil and Water Chemistry 3(2+1)

9. Fish in Nutrition 1(1+0)

Practicals: History, hazards in water and safety precautions; pool maintenance and water quality control. Learningswimming,understandingandpracticeofducking thehead,kicking action, holding breath under water and various strokes (free style, breast stroke, butterfly, back stroke); competitive swimming-relays and medleys, lap time practice, swimming and floating aids andtheiruses;diving-styles ofdiving,rules, regulations and precautions. Methodsoflife saving in water; Boating, canoeing and sailing: types, maintenance, skill development, rules and regulations and practice.

II-SEMESTER

<table>
<thead>
<tr>
<th>SN</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AQC-121</td>
<td>Fresh Water Aquaculture</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>2.</td>
<td>FRM-121</td>
<td>Anatomy and Biology of Finfish</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3.</td>
<td>AEM-121</td>
<td>Limnology</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4.</td>
<td>AEM-122</td>
<td>Marine Biology</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5.</td>
<td>FRM-122</td>
<td>Inland Fisheries</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>6.</td>
<td>FPT-112</td>
<td>Food Chemistry</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>7.</td>
<td>FEES-121</td>
<td>Information and Communication Technology</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>8.</td>
<td>AQC-122</td>
<td>Aquaculture in Reservoirs</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>9.</td>
<td>CNC-121</td>
<td>Physical Education, First Aid & Yoga Practices</td>
<td>1(0+1)CNC*</td>
</tr>
</tbody>
</table>

Total Course Credit Hour 22(14+8)

CNC= Compulsory non-credit course.
1. Fresh Water Aquaculture 3(2+1)

2. Anatomy and Biology of Finfish 3(2+1)

Theory: Study of external and internal anatomy of important groups of finfish. Study of oral region and associated structures. Digestive system and associated digestive glands. Food and feeding habits of commercially important fishes. Qualitative and quantitative methods of analysis of gut contents. Circulatory system, respiratory system, nervous system, urino-genital system, endocrine system, skeletal systems and sensory organs. Reproductive biology – maturity stages, gonado-somatic index, ponderal index, fecundity, sex ratio and spawning. Eggs and larval stages and developmental biology. Age and growth determination by direct and indirect methods. Fish migration - type and significance. Tagging and marking.

3. **Limnology 3(2+1)**

Theory: Introduction to limnology: inland water types, their characteristics and distribution; ponds and lakes; streams and rivers; dynamics of lentic and lotic environments. Lakes - their origin and diversity. Famous lakes of the world and India; nature of lake environment; morphometry, physical and chemical conditions and related phenomena; biological relations: influence of physical and chemical conditions on living organisms in inland waters. Plankton: planktonic organisms; classification of plankton; distribution of plankton: geographic, vertical, horizontal and seasonal distribution of phytoplankton and zooplankton; seasonal changes of body form in planktonic organisms; food of planktonic organisms; primary productivity: Aquatic plants: characteristics, classification, zonation, seasonal variations, quantity produced chemical composition distribution in different waters, limnological role. Nekton: composition, distribution, movements. Benthos: classification; periphyton; zonation; distribution; movements and migration; seasonal changes in benthos, profundal bottom fauna. Biological productivity: circulation of food material; classification of lakes based on productivity; laws of minimum; biotic potential and environmental resistance; quantitative relationships in a standing crop; trophic dynamics; successional phenomena; indices of productivity of lakes; artificial enrichment. Lotic environments: running waters in general; physical conditions; classification of lotic environments, biological conditions; productivity of lotic environments. influence of currents; plant growth; plankton; nekton; benthos; temporary and head waters streams; ecological succession.

4. **Marine Biology 3(2+1)**

Practicals: Study of common instruments used for collection of phytoplankton, zooplankton and benthos. Collection, preservation and analysis of phytoplankton, zooplankton, sea weeds, Collection preservation and analysis of inter tidal organisms.
5. Inland Fisheries 3(2+1)

Practicals: Analysis of species composition of commercial catches at landing and assembling centers, sampling and familiarization of commercially important groups. Observations and experimental operations of selected fishing crafts and gears in inland / estuarine waters. Maintenance of records on catch data. Visit to Dept. of fisheries, lakes and reservoirs, net making yards.

6. Food Chemistry 3(2+1)

7. Information and Communication Technology 2(1+1)

Theory: IT and its importance. IT tools, IT-enabled services and their impact on society; computer fundamentals; hardware and software; input and output devices; word and character representation; features of machine language, assembly language, high-level language and their advantages and disadvantages; principles of programming - algorithms and flowcharts; Operating systems (OS) - definition, basic concepts, introduction to WINDOWS and LINUX Operating Systems; Local area network (LAN), Wide area network (WAN), Internet and World Wide Web, HTML and IP; Introduction to MS Office - Word, Excel, Power Point. Audio visual aids - definition, advantages, classification and choice of A.V aids; cone of experience and criteria for selection and evaluation of A.V aids; video conferencing. Communication process, Berlo’s model, feedback and barriers to communication.

Practicals: Exercises on binary number system, algorithm and flow chart; MS Word; MS Excel; MS Power Point; Internet applications: Web Browsing, Creation and operation of Email account; Analysis of fisheries data using MS Excel. Handling of audio visual equipments. Planning, preparation, presentation of posters, charts, overhead transparencies and slides. Organization of an audio visual programme.

8. Aquaculture in Reservoir 2(1+1)

Theory: Definition of reservoirs in India; nature and extent of reservoirs, topography and species diversity; importance of morpho-edaphic index in reservoir productivity and classification; factors influencing fish production; trophic phases in reservoir; pre-impoundment and post-impoundment stages and their significance in establishment of reservoirs fisheries. Salient features of reservoir limnology and their significance to fisheries development; management of small, medium and large reservoirs; present status and future prospects in reservoirs fish production. Fisheries of some important reservoirs; recent advances in reservoirs fisheries management; conservation measures in reservoir fisheries. Fish stocking in Reservoirs Role of cage and pen culture in enhancement of fish production from reservoirs; history of cage culture, advantages of cage culture; selection of suitable site of cage culture; cage materials, designs, shape, size and fabrication; cage frames and supporting system. Integration of cage culture with other farming systems. History of pen culture, pen materials, fabrication; breeding of fish in pen; rearing of spawn in pen; grow-out from pens. Suitable species for culture in cages and pens; constraints in cage and pen culture; economics of cage and pen culture.

Practicals: Preparation of charts on the present situation of reservoirs fisheries productivity; detailed case studies of selected reservoirs on the changing trends in capture fisheries profile; drawing inferences from the analysis of data; suggestions for the sustainable development of reservoirs fisheries. Case studies on cage and pen culture; field visit to cage and pen culture site to acquaint with construction details and operation.
Practicals: Introduction to physical education: definition, objectives, scope, history, development and importance; physical culture; Meaning and importance of Physical Fitness and Wellness; Physical fitness components -speed, strength, endurance, power, flexibility, agility, coordination and balance; Warming up - General & Specific & its Physiological basis; Test and measurement in physical education; Training and Coaching - Meaning & Concept; Methods of Training; aerobic and anaerobic exercises; Calisthenics, weight training, circuit training, interval training, Fartlek training; Effects of Exercise on Muscular, Respiratory, Circulatory & Digestive systems; Balanced Diet and Nutrition: Effects of Diet on Performance; Physiological changes due to ageing and role of regular exercise on ageing process; Personality, its dimensions and types; Role of sports in personality development; Motivation and Achievements in Sports; Learning and Theories of learning; Adolescent Problems & its Management; Posture; Postural Deformities; Exercises for good posture.

Yoga; Introduction to - Asanas, Pranayam, Meditation and Yogic Kriyas; Role of yoga in sports; Governance of sport in India; Important national sporting events; Awards in Sports; History, latest rules, measurements of playfield, specifications of equipments, skill, technique, style and coaching of major games (Cricket, football, table Tennis, Badminton, Volleyball, Basketball, Kabaddi and Kho-Kho) and Athletics

III-SEMESTER

<table>
<thead>
<tr>
<th>SN</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FRM-211</td>
<td>Physiology of Finfish and Shellfish</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2.</td>
<td>AQC-211</td>
<td>Fish Food Organisms</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>3.</td>
<td>AEM-211</td>
<td>Aquatic Ecology, Biodiversity and Disaster</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4.</td>
<td>AEM-212</td>
<td>Fishery Oceanography</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>5.</td>
<td>AQC-212</td>
<td>Ornamental Fish Production and Management</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>6.</td>
<td>FPT-211</td>
<td>Freezing Technology</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>7.</td>
<td>FGR-211</td>
<td>Genetics and Breeding</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>8.</td>
<td>AAHM-211</td>
<td>Fish Immunology</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>9.</td>
<td>FEES-211</td>
<td>Fisheries Economics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>10.</td>
<td>FE-221</td>
<td>Aquaculture Engineering</td>
<td>3 (2+1)</td>
</tr>
</tbody>
</table>

Total Course Credit Hour 24(14+10)
1. **Physiology of Finfish and Shellfish 3(2+1)**

Theory: Water as a biological medium. Gas exchange; Circulation; Excretion; Osmoregulation; Reproductive physiology; Muscle physiology; Sense organs; Energy and nutrient status of food; Nitrogen balance; Standard and active metabolism; Energy utilization; Effect of environmental factors on physiology of fin and shellfishes. Stress related physiological changes. Structure and functions of important endocrine glands.

2. **Fish Food Organisms 2(1+1)**

Theory: Candidate species of phytoplankton and zoo-plankton as live food organisms of freshwater and marine species. Tropic potentials - proximate composition of live feed. Biology, culture requirements and methodology of important live food organisms; Green algae, blue-green algae, spirulina, diatoms, infusoria, rotifers, cladocerons, tubifex, brine shrimp, chironomids. Culture of earthworms, bait fish and forage fish.

Practicals: Methods of collection and identification of different live food organisms. Laboratory scale culture of selected live food organisms (green algae, spirulina, chetoceros, rotifer, Moina, copepod). Evaluation of live food organisms. Decapsulation and hatching method of brine shrimp cyst.

3. **Aquatic Ecology, Biodiversity and Disaster Management 3(2+1)**

Disaster Management in Fisheries: Basic concepts: Hazard, risk, vulnerability, disaster, capacity building. Multi-hazard and disaster vulnerability of India. Types of natural and manmade hazards in fisheries and aquaculture - cyclones, floods, droughts, tsunami, El-nino, algal blooms, avalanches, pollution, habitat destruction, over fishing, introduction of exotic species, landslides, epidemics, loss of bio-diversity etc. Causes, characteristics and effects of disasters. Management strategies: pre-disaster, during disaster and post-disaster. Pre-disaster: prevention, preparedness and mitigation; different ways of detecting and predicting disasters; early warning, communication and dissemination, community based disaster preparedness, structural and non-structural mitigation measures. During disaster: response and recovery systems at national, state and local, coordination between different agencies,

Practicals: Collection of species of fishes and other organisms and studying the assemblages of organisms of rocky, sandy and muddy shores, lentic and lotic habitats. Observation of adaptive characters and interrelationships like commensalisms, symbiosis, parasitism and predation. Field visits to mangroves, marine parks, sanctuaries, coral reefs, rivers, hills, streams, lakes and reservoirs. Working out biodiversity indices.

4. Fishery Oceanography 2(1+1)

Theory: Introduction to Oceanography: classification; expeditions national and international. Earth and the ocean basin, distribution of water and land; relief of sea floor; Major feature of topography and terminology; major divisions. Relief in Indian oceans. Ocean Waves: definition and terms; classification, Difference between surface and long waves; wave theories; surface wave generation; spreading growth; Beaufort Scale; spilling and breaking waves; long waves, Tsunamis, Seiches, internal waves. Ocean Tides: Definition; Tidal phenomenon, elementary tidal definition; tidal inequalities; tide producing forces types of tides tidal bores, tide prediction. Ocean Currents: Definitions and features; measurements of currents; direct and indirect methods forces acting on sea waters; drift currents Ekman spirals, upwelling, sinking, gradient currents; thermohaline circulation; characteristics; course; and significance of some major ocean currents of the world. El-Nino. Physical properties of sea water: Salinity and chlorinity; temperature; thermal properties of sea water; colligative and other properties of sea water; Residence time of constituents in seawater. Properties of sea ice; transmission of sound; absorption of radiation; eddy conductivity; diffusivity and viscosity. General distribution of temperature, salinity and density: Salinity and temperature of surface layer (SST), subsurface; distribution of temperature and salinity; The T-S diagram; water masses of Indian oceans. Chemistry of sea water: Constancy of composition; elements present in sea water; artificial sea water; dissolves gases in sea water; CO$_2$ system and alkalinity; inorganic agencies affecting composition of sea water distribution of phosphorus, nitrogen compounds, silicates and manganese in the oceans, factor influencing their distribution.

5. Ornamental Fish Production and Management 2(1+1)

6. Freezing Technology 2(1+1)

Theory: Introduction to freezing technology; characteristics of fish and shellfish; changes in fish after death, spoilage of fish, spoilage and pathogenic microorganism. Handling of fresh fish; sanitation in processing plants. Principles of low temperature preservations. Chilling of fish – methods and equipment for chilling; icing – quality of ice, ice making; refrigerated or chilled sea water, chilling rate; spoilage of fish during chilled storage; use of antibiotics and chemicals. Freezing of fish fundamental aspects; heat units; freezing point depression, eutectic point; freezing rate; methods of freezing, freeze drying, physic – chemical changes that occur during freezing, mechanism of ice crystal formation; preparation of fish for freezing. Changes that occur during frozen storage – microbiological, physical and chemical changes, protein denaturation, fat oxidation, dehydration, drip; protective treatments – polyphosphate, glazing, antioxidants, packaging; thawing of frozen fish – methods of thawing. Transportation of frozen fish, cold chain, quality control, HACCP in freezing industry.

Practicals: Sanitation and plant housekeeping; chilling and freezing equipment, instruments; packages and product styles; methods of icing fish; cooling rate; preservation by chilled sea water; freezing and thawing curves; freezing of different varieties of fish and shellfish; estimation of drip; determination of quality changes during frozen storage; inspection of frozen fishery products; visits to ice plants, cold storages and freezing plants.
7. Genetics and Breeding 2(1+1)

8. Fish Immunology 2(1+1)

9. Fisheries Economics 3(2+1)

Theory: Introduction to fisheries economics, basic economic terminologies – micro and macroeconomics, positive and normative economics, environmental economics, resource, scarcity, farm-firm relationships, production Contribution of fisheries sector to the economic development of the country. Micro-economics: theories of demand, supply; market – equilibrium price, consumption, utility, Consumer surplus. Elasticity – price, income, cross, application of elasticity in fisheries managerial decision. Farm production economics – production functions in capture and culture fisheries; Costs and returns – breakeven analysis of fish production system; concepts of externalities and social cost; factors of production, marginal cost and return, law of diminishing marginal return, returns to scale, economies of scale and scope, revenue, profit maximization, measurement of technological change, farm planning and budgeting. Significance or importance of marginal cost. Macro-economics: Introduction to national income, accounting, measurement and determinants of national income, contribution of fisheries to GNP and employment; balance of payments, economic growth and sustainable development. Globalization: dimensions and driving Forces. Introduction to GATT and WTO. WTO Framework – Key Subjects - Agreement on Sanitary and Phytosanitary Measures (SPS), Seafood Export Regulations; Non-Tariff Barriers (NTBs) and Agreement on Anti-Dumping Procedures. Fisheries Subsidies and WTO. Fisheries Trade and Environment; protests against globalisation and WTO. Intellectual Property Rights (IPR) and different forms. Patents and patenting process, Agreement on TRIPS. Bio-piracy. GMOs in fisheries. Salient features of Indian Patent (Amendment) Act 2005. Overview of Patents in Indian fisheries sector.

Practicals: Demand and supply functions of fish market – determination of equilibrium price for fish and fisheries products, calculation of price, income and cross elasticities. Production function – production with one or two variable inputs. Shifting demand and surplus curve and its importance in fish price. Economic analysis on cost, return and breakeven of any two production units like fish farm / shrimp farm / seed production unit / fish processing plant / export unit.

10. Aquaculture Engineering 3(2+1)

Theory: Fish Farm- Definition, objectives, types of farms; fresh water, brackish water and marine farms. Selection of site for aqua farm- site selection criteria, pre-investment survey viz., accessibility, physical features of the ground, detailed survey viz., site condition, topography, soil characteristics.
Land Surveying- definition, principles of surveying, classification of surveying, instruments used for chaining, chaining on uneven or sloping ground and error due the incorrect chain length. Chain surveying- definitions, instruments used for setting out right angles, basic problems in chaining, cross staff survey. Compass surveying - definitions, bearing, meridians, whole circle bearing system, reduced bearing system, theory of magnetic compass, prismatic compass. Leveling - definitions, methods of leveling, leveling instruments, terms and abbreviations, types of spirit leveling. Plane table surveying- instruments required, working operation, methods. Contour surveying- definition, contour interval, characteristics of contour, contouring methods and uses of contour.
Calculation of area of regular and irregular plane surfaces, Trapezoidal and Simpson’s rule, volume of regular and irregular shape as applied to stacks and heaps, calculation of volume of pond. Earth work calculations- excavation, embankment, longitudinal slope and cross slope,
calculation of volume of earth work as applied to roads and channels.

Soil and its properties - classification of soil; soil sampling methods; three phase system of soil, definitions of soil properties and permeability of soil. Ponds - classification of ponds; excavated ponds, embankment ponds, barrage and diversion ponds; rosary system and parallel system. Planning of fish ponds, layout planning, materials planning, manual planning, comparison of square and rectangular ponds, large and small ponds; Types of ponds; nursing ponds, rearing ponds and stocking ponds. Design of ponds, pond geometry; shape, size, bottom slope of pond etc., construction ponds viz., marking, excavation etc., Dykes, types of dykes viz., peripheral dykes, secondary dyke, design of dykes, construction of dykes.

Water distribution system - canal, types of canals; feeder canal, diversion canal etc., Pipe line system, Water control structures- types of inlet and outlet and their construction. Water budget equation, Pond drainage system; seepage and the methods used for seepage control, evaporation; factors affecting evaporation, erosion of soil in dykes and its control. Site selection, planning and construction of coastal aqua farms. Brackish water fish farms- tide fed, pump fed farms, site selection - topography, tidal amplitude, soil and water sources etc., Hatcheries- site selection, infrastructural facilities; water supply system, main hatchery complex viz., Layout plan and design of hatcheries- brood stock ponds, artemia hatching tanks, sheds etc, Raceway culture system- site selection, layout plan, types of raceway culture system viz., parallel system, series system etc., Aerators- principles, classification of aerators and placement aerators. Pumps- purpose of pumping, types, selection of pump, total head, horse power calculation. Filters- types and constructions.